Roles of interaction between actuator and nucleotide binding domains of sarco(endo)plasmic reticulum Ca(2+)-ATPase as revealed by single and swap mutational analyses of serine 186 and glutamate 439.
نویسندگان
چکیده
Roles of hydrogen bonding interaction between Ser(186) of the actuator (A) domain and Glu(439) of nucleotide binding (N) domain seen in the structures of ADP-insensitive phosphorylated intermediate (E2P) of sarco(endo)plasmic reticulum Ca(2+)-ATPase were explored by their double alanine substitution S186A/E439A, swap substitution S186E/E439S, and each of these single substitutions. All the mutants except the swap mutant S186E/E439S showed markedly reduced Ca(2+)-ATPase activity, and S186E/E439S restored completely the wild-type activity. In all the mutants except S186E/E439S, the isomerization of ADP-sensitive phosphorylated intermediate (E1P) to E2P was markedly retarded, and the E2P hydrolysis was largely accelerated, whereas S186E/E439S restored almost the wild-type rates. Results showed that the Ser(186)-Glu(439) hydrogen bond stabilizes the E2P ground state structure. The modulatory ATP binding at sub-mm approximately mm range largely accelerated the EP isomerization in all the alanine mutants and E439S. In S186E, this acceleration as well as the acceleration of the ATPase activity was almost completely abolished, whereas the swap mutation S186E/E439S restored the modulatory ATP acceleration with a much higher ATP affinity than the wild type. Results indicated that Ser(186) and Glu(439) are closely located to the modulatory ATP binding site for the EP isomerization, and that their hydrogen bond fixes their side chain configurations thereby adjusts properly the modulatory ATP affinity to respond to the cellular ATP level.
منابع مشابه
Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase.
Prolongation of relaxation is a hallmark of diabetic cardiomyopathy. Most studies attribute this defect to decreases in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) expression and SERCA2a-to-phospholamban (PLB) ratio. Since its turnover rate is slow, SERCA2a is susceptible to posttranslational modifications during diabetes. These modifications could in turn compromise conformational rea...
متن کاملThe Evolutionary History of Sarco(endo)plasmic Calcium ATPase (SERCA)
Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na(+)/K(+) transport...
متن کاملDissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses.
Steady-state and transient-kinetic studies were conducted to characterize the overall and partial reactions of the Ca(2+)-transport cycle mediated by the human sarco(endo)plasmic reticulum Ca(2+)-ATPase 3 (SERCA3) isoforms: SERCA3a, SERCA3b, and SERCA3c. Relative to SERCA1a, all three human SERCA3 enzymes displayed a reduced apparent affinity for cytosolic Ca(2+) in activation of the overall re...
متن کاملChloro(2,2':6',2"-terpyridine) platinum inhibition of the renal Na+,K+-ATPase.
Chloro(2,2':6',2"-terpyridine) platinum, a bulky, hydrophilic reagent, inhibited the renal sodium pump with a single exponential time course. K(+) increased the rate constant of the reaction by about twofold; the K(+) concentration dependence was monotonic, with a half-maximal effect observed at 1 mM, consistent with K(+) acting at a transport site. Na(+), Mg(2+), eosin, and vanadate did not si...
متن کاملThe anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival.
Cardiac contractility is regulated through the activity of various key Ca(2+)-handling proteins. The sarco(endo)plasmic reticulum (SR) Ca(2+) transport ATPase (SERCA2a) and its inhibitor phospholamban (PLN) control the uptake of Ca(2+) by SR membranes during relaxation. Recently, the antiapoptotic HS-1-associated protein X-1 (HAX-1) was identified as a binding partner of PLN, and this interacti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 284 37 شماره
صفحات -
تاریخ انتشار 2009